Earth Science Enterprise Technology Planning Workshop ### **On-Board Processing** Graham Bothwell Loren Lemmerman Amy Walton **January 24-25, 2001** #### Earth Science Enterprise Technology Planning Workshop ### **Onboard Processing** #### Focus: Technologies needed for data compression, event recognition and response, hyperspectral and radar data onboard processing, and the required processor and memory requirements ### Aspects of technology requiring validation: - Fault-tolerant computing and processor stability - Autonomous event detection and response - Situation-based data compression and processing ### **Agenda** #### Tuesday, January 23, 2001 Introduction, Overview Science and technology presentations Real-time earthquake detection Frank Vernon (UCSD) On-board architecture Jason Hyon (JPL) Recap of the AIST Technology Projection Workshop, August 2000 Loren Lemmerman (ESTO) Hyperspectral applications Robert Ferraro (JPL) Superconducting applications Jerome Luine (TRW) Software-implemented fault telerance Michael Lovellette (NRL) Image feature identification Michael Turmon (JPL) Autonomous operations Michael Swartout (Washington University) Radar applications for global precipitation Eastwood Im (JPL) Discussion and interim summary of issues #### Wednesday, January 24, 2001 Identify convergence of science needs and candidate technology Define specific capability/technology needs Identify ongoing investments and development gaps Formulation of draft technology development roadmaps flight/ground validation required? Potential validation missions ### **Workshop Participants** | Name | Affiliation | Name | Affiliation | |--------------------|-----------------|-------------------|--------------------| | Aljabri, Abdullah | JPL | Lovellette, | NRL | | · · | | Michael | | | Allen, Mark | Honeywell | Luine, Jerome | TRW | | Andrews, David | U. Kansas | Mills, Carl | LaRC | | Barfield, Joe | South west Res. | Minning, Chuck | JPL | | | Inst. | | | | Brambor a, Cliff | GSFC | Pedersen, Barbara | Comput er Sciences | | | | | Corp. | | Brown, Larry | Motorol a | Salay, David | Battelle | | Burke, Tom | Northrop- | Smith, Dan | General Dynamics | | | Grumm an | | | | Caprio, Cesare | BAE Systems | Swartwout, | Washington U. | | | | Michael | | | Chu, Kai-Dee | ESTO | Travler, Ann | OSL | | Coleman, Tommy | Alabama A&M | Turmon, Michael | JPL | | Ferraro, Robert | JPL | Vernon, Frank | UCSD | | Hyon, Jason | JPL | Wilcox, Jaroslava | JPL | | Im, Eastwood | JPL | Wood, Kent | NRL | | Lee III, Robert B. | LaRC | Wyatt, Jay | JPL | | Lindell, Scott | Lockheed-Martin | | | ESE-Tech-Wkshp - 4 ### **Session Approach** - The first day covered: - Sample science and mission applications which drive the technology - A range of typical technology options for on-board processing - Recent results from similar technology workshops - After the science and technology presentations, session participants developed a list of key topics in on-board processing - From these topics, a range of potential technology validation experiments/missions was developed ### Categories of on-board processing technology topics | Integra ted System Space 7 | Test: | |-----------------------------------|-------| | System-Level Test | | #### *Autonomy* - Communications Node (Standard switched | Calibration (Data Handling) packet node) - Mission Priorities - Science Even t Handling - On-Board Resource Management - Autonomou's Formation-keeping - On-Board Adaptive Data Management - On-Board Feature Recognition - On-Board Science Decision-Making Reduce communication bandwidth #### Reduce co sts - Radiation-Tolerant Processors (with Fault Tolerance) - Fault Tolerant Operating Sy stems for **Space Processing** - Synchronization Reduce data lat ency • Real-Time Performance Radical new te chnology • MEMS Systems #### No In-space Integrated Systems Test Needed - Radiation-Hardened Processors - Framework Architecture - Risk Assessment - On-Board Self Tests - Reconfigurable Processor Programming Language - Terrestrial COTS Package s - Low-power Libraries - Memory Technology - Frameworks - Open Source Operating Sy stems - Data Compression - Data Reduction - Reconfigurable Processors - High-Speed Data Bus (Network Interface Device) # Potential for technology validation missions - Hardware-related missions: - Radiation tolerant processors - Communications node (package switching) / radiation tolerant network interface - Software-related missions: - Autonomous spacecraft-level mission operations - Payload (instrument-specific) systems # Requirements for: Radiation Tolerant Processors #### The Challenge: Need radiation tolerance (~100Krad) within one generation of current technology with reliability of radhardened #### **Potential Future ESE Missions:** VISION #### **Technology Approach:** - •Software/hardware augmentation for SEE/SEU susceptibility - •Radiation-tolerant libraries #### **Drivers for Flight Validation:** •Cannot reproduce space environment on ground # Validation Experiment for: Radiation Tolerant Processors #### **Objective:** Demonstrate system reliability, quantify improvements #### **Top-Level Development and Flight Schedule** - 1. Find "new" hardware (Year 1) - 2. Develop fault tolerant operating system (Year 2) - 3. Formal ground test (Year 3) - 4. Perform space experiment (Year 4) #### **Scope:** - •Piggyback on long-term mission. - •Multiple processors # Requirements for: Communication Node/Radiation Hardened Networks #### The Challenge: - •Communications Node/ Radiation tolerant network interface - •Allow common data exchange architecture - •Distributed systems #### **Potential Future ESE Missions:** - Global precipitation mission - Any multi-platform mission #### **Technology Approach:** - •Develop common network node to fly on multiple spacecraft - •Develop a packetized, high speed radhard data bus #### **Drivers for Flight Validation:** - •Can't reproduce on the ground because of distances and geometry - •Develop high-speed communication components # Validation Experiment for: Communication Node/Radiation Hardened Networks #### **Objective:** - •Demonstrate a working spaceborne network (packet switching core) - •Demonstrate a standard component interface #### **Top-Level Development and Flight Schedule** - 1. Develop network architecture - 2. Develop hardware architecture for switching - 3. Develop communications architecture - 4. Develop Routing software and protocols - 5. Fly (would take about 2 years to build) #### **Scope:** •Piggyback multiple spacecraft/missions # Requirements for: Autonomy Systems (Spacecraft level) #### The Challenge: (For Planning): - •Autonomous spacecraft control - •Software for autonomous mission operations (For Interesting Targets): •Feature extraction #### **Technology Approach:** (For Planning): - Onboard planning and scheduling - Synchronization - Hazard checking - Resource management - Event handling (For Interesting Targets): - Target handoff - Region classification - Template matching - Model-based identification #### **Potential Future ESE Missions:** - Sensor Webs - Land Cover Inventory #### **Drivers for Flight Validation:** - •Long term system level complexity: faults, asynchronous processing, latency - •Target handoff to other spacecraft and instruments - Ability to use identified features in planning ESE-Tech-Wkshp - 12 # Validation Experiment for: Autonomy Systems (Spacecraft level) #### **Objective:** - •Multisensor fusion/web - •Hooked to an incremental planner #### **Top-Level Development and Flight Schedule** - 1. Develop software requirements (Year1) - 2. Develop software (e.g., target processing algorithm) - 3. Run planner on ground - 4. Run piggyback mission - 5. Run multi-spacecraft mission (2005 timeframe) #### **Scope:** - •Value-added multiple sensor mission - •Could be dedicated or piggyback # Requirements for: Payload Systems (instrument specific) #### The Challenge: - •Data reduction - •More effective bandwidth utilization - •Fault tolerant and robust #### **Technology Approach:** Develop common packages for - •data compression - •Fourier transforms - •selection and segmentation #### **Potential Future ESE Missions:** - Hyperspectral instruments - Large data intensive systems (SARs) AVIRIS data: Mineral map, Cuprite, Nevada #### **Drivers for Flight Validation:** - •Validate fault models, reliability, accuracy - •Scientific acceptance: demonstrate robustness # Validation Experiment for: Payload Systems (instrument specific) #### **Objective:** - •Demonstrate advanced faulttolerant software - •Dramatic reduction in downlink bandwidth or increased use of existing link - •Quantify and enable new science 10x or more #### **Top-Level Development and Flight Schedule** - 1. Science collaboration - 2. Could fly soon new hardware development not necessary #### **Scope:** - •Value-added to appropriate missions (hyperspectral, Firesat) - •Could be piggyback ## Summary Tables | TECHNOLOGY DESCRIPTION | | VALIDATION EXPERIMENT | | | | | |---|---|--|--|---|--|---| | Future Mission Type (ESE Mission applicability) | Challenge
Description | Technology
Approach | DRIVER(S) FOR
FLIGHT
VALIDATION | OBJECTIVE | SCOPE | MILESTONES | | VISION | Need radiation
tolerance (~100Krad)
within one generation
of current technology
with reliability of rad-
hardened. | Software/hardware
augmentation for
SEE/SEU
susceptibility | Cannot reproduce space environment on ground | Demonstrate system reliability, quantify improvements | Piggyback on long-
term mission.
Multiple
processors. | 1. Find "new" hardware (Year 1) 2. Develop fault tolerant operating system (Year 2) 3. Formal ground test (Year 3) 4. Perform space experiment (Year 4) | | | | Radiation-tolerant
libraries | none | | | | | Global Precipitation
Mission, any multi-
platform mission | Communications
Node/ Rad tolerant
network interface | Develop common
network node to fly
on multiple
spacecraft | Can't reproduce on
the ground because
of distances and
geometry | Demonstrate a
working spaceborne
network (packet
switching core) | Piggyback multiple
spacecraft/mission
s | 1. Develop network architecture 2. Develop HW architecture for switching 3. Develop comm arch 4. Develop Routing SW/protocols 5. Fly (2 years to build) | | | Allows common data exchange architecture Distributed systems | Develop a
packetized, high
speed rad- hard data
bus | Develop high-speed communication components | Demonstrate a standard component interface | Any host mission -
(piggyback) | same as above | ## Summary Tables (Cont.) | TECHNOLOGY DESCRIPTION | | VALIDATION EXPERIMENT | | | | | |---|--|---|---|---|---|--| | Future Mission Type (ESE Mission applicability) | Challenge
Description | Technology
Approach | DRIVER(S) FOR
FLIGHT
VALIDATION | OBJECTIVE | SCOPE | MILESTONES | | Sensor Webs,
Land Cover
Inventory, Hazard
detection
(earthquake, buoys) | (Planning) Autonomous spacecraft contro; SW for autonomous mission operations | Onbd planning
scheduling,
synchronization,
hazard checking,
resource mgmet,
event handling | Long term syteem
level complexity,
faults, asynchronous
processing, latency | Multisensor
fusion/web; hooked to
an incremental
planner | Value-added
multiple sensor
mission (could be
dedicated or
piggyback) | 1. Develop SW reqts (Year1) 2. Dev software (e.g., target processing algorithm) 3. Run planner on ground 4. Run piggyback mission 5. Run multi-SC mission ['05 timeline] | | | (Interesting targets) Feature Extraction | Target handoff,
region classificaton,
templated matching,
model-based | Target handoff to other spacecraft and instruments. (Instrument specific). Ability to use identified features in planner in previous line). | | | | | Hyperspectral instruments, large data intensive systems (SARs) [SW-inst] | Data reduction, more
effective bandwidth
utilization, fault
tolerant and robust | Develop common packages for data compression and Fourier transforms, selection and segmentation | Validate fault models, reliability, accuracy. Scientific acceptance: demonstrate robustness | Dramatic reduction in | Value-added to appropriate missions - hyperspectral, Firesat. Could be piggyback. | Science collaboration. Could fly soon - new hardware development not necessary. | ESE-Tech-Wkshp - 17